next up previous
Next: Sanger: Probability Interpretation Up: No Title Previous: Reid: The efficacy

Ritz and Sejnowski: Correlation Coding in Stochastic Networks of Leaky Integrate-and-Fire Neurons

The Salk Institute CNL

Stimulus-dependent changes have been observed in the correlations between the spike trains of simultaneously-recorded pairs of neurons from the auditory cortex of marmosets even when there was no change in the average firing rates (deCharms, Schreiner and Merzenich, Soc. for Neuroscience Abstracts 21: 1177, 1995). A simple neural model can reproduce most of the characteristics of these experimental observations based on model neurons having leaky integration and fire-and-reset spikes and with Poisson-distributed, balanced input. The source of the synchrony in the model was common sensory input. The outputs of neurons in the model appear noisy (almost Poisson) owing to the stochastic nature of the input signal, but there is nevertheless a strong central peak in the correlation of the output spike trains. The experimental data and this simple model clearly demonstrate how even a noisy-looking spike train can convey basic information about a sensory stimulus in the relative spike timing between neurons.



Tony Zador
Tue Oct 22 16:34:57 PDT 1996