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DeWeese, Michael R. and Anthony M. Zador. Shared and private
variability in the auditory cortex. J Neurophysiol 92: 1840–1855,
2004. First published April 28, 2004; 10.1152/jn.00197.2004. The
high variability of cortical sensory responses is often assumed to
impose a major constraint on efficient computation. In the auditory
cortex, however, response variability can be very low. We have used
in vivo whole cell patch-clamp methods to study the trial-to-trial
variability of the subthreshold fluctuations in membrane potential
underlying tone-evoked responses in the auditory cortex of anesthe-
tized rats. Using methods adapted from classical quantal analysis, we
partitioned this subthreshold variability into a private component
(which includes synaptic, thermal, and other sources local to the
recorded cell) and a shared component arising from network interac-
tions. Here we report that this private component is remarkably small,
usually about 1–3 mV, as quantified by the variance divided by the
mean of the ensemble of tone-evoked response heights. The shared
component can be much larger, and shows more heterogeneity across
the population, ranging from about 0 to 10 mV. The remarkable fact
that, at least 5 synapses from the auditory periphery, this variability
remains so small raises the possibility that the intervening neural
circuitry is organized so as to prevent private noise from accumulating
as neural signals propagate to the cortex.

I N T R O D U C T I O N

Neuronal fidelity can impose important constraints on how
the cortex represents information, and on computational strat-
egies. In the visual cortex, repeated presentations of the same
sensory stimulus typically elicit highly variable neuronal re-
sponses (Buracas et al. 1998; Dean 1981; Heggelund and
Albus 1978; Tolhurst et al. 1983; cf. Kara et al. 2000). This
unreliability has been proposed to reflect a fundamental and
general limitation of cortical architecture (Shadlen and New-
some 1998). In the auditory cortex, however, variability can be
much lower. Repeated presentations of the same acoustic
stimulus can elicit responses with very low trial-to-trial spike
count variability; in some cases, this variability is as low as
mathematically possible, given the firing rate (DeWeese et al.
2003). Such reliable responses raise the possibility that cortical
computation might not be organized around inherently noisy
responses.

Cortical spike trains arise from the integration of synaptic
inputs generated by other cortical and subcortical neurons. The
subthreshold fluctuations in membrane potential associated
with these inputs offer a rich source of information about the
cellular, synaptic, and circuit processes underlying the supra-
threshold variability. Although variability of visual cortical
responses has been assessed by means of a variety of intracel-
lular, extracellular, and optical techniques (Ahissar et al. 1992;
Anderson et al. 2000a,b; Arieli et al. 1995, 1996; Ferster 1996;

Lampl et al. 1999; Monier et al. 2003; Tsodyks et al. 1999),
variability in the auditory cortex has not received comparable
scrutiny.

We have measured subthreshold response variability in the
auditory cortex using whole cell patch-clamp recording. The
rodent auditory cortex provides a convenient experimental
system for studying synaptic variability in vivo. Brief tones
elicit postsynaptic potentials (PSPs) with a stereotyped form
and latency, reminiscent of the electrically evoked PSPs re-
corded in in vitro preparations such as brain slice and the
neuromuscular junction (del Castillo and Katz 1954). This
similarity allows us to build on the extensive conceptual
framework that has been developed for analyzing synaptic
variability in vitro (Katz 1966).

Here we report that in some neurons subthreshold variability
is very low—a millivolt or less—whereas in others it is much
higher. We partitioned this total subthreshold variability into a
private component (which includes synaptic, thermal, and
other sources local to the recorded cell) and a shared compo-
nent arising from network interactions (see Fig. 1). We found
that the private component was consistently small, usually
about 1–3 mV as quantified by the variance over the mean
height of evoked responses, even when the total variability was
much higher (0–10 mV). The remarkable fact that, at least 5
synapses from the auditory periphery, the variability remains
so small raises the possibility that special mechanisms prevent
the noise from growing as the neural signal propagates along
this neural pathway (cf. Shadlen and Newsome 1998). Our
results help bridge the gap between the phenomenological
study of sensory-evoked variability and the synaptic mecha-
nisms underlying this variability.

M E T H O D S

To assess the trial-to-trial variability of tone-evoked responses in
vivo, we presented 32 brief pure-tone pips of different frequencies and
fixed intensity while recording from neurons in the auditory cortex of
anesthetized rats. Each pip was presented repeatedly, allowing us to
assess the variability of the synaptic response to multiple presenta-
tions of each stimulus. We used in vivo whole cell patch-clamp
methods (Borg-Graham et al. 1998; Ferster and Jagadeesh 1992;
Hirsch et al. 1995; Metherate and Ashe 1993b; Moore and Nelson
1998; Nelson et al. 1994; Zhu and Connors 1999) to record the PSPs
evoked by this ensemble of pure-tone pips. We also simultaneously
recorded the local field potential (LFP) using a second nearby (�0.5
mm) patch electrode, which was instrumental in estimating the rela-
tive contributions of shared and private sources of variability.
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Quantifying response variability

Motivated by classical quantal analysis, we quantified the devia-
tions about the mean response to each tone in terms of the variability
index q, defined as the ratio of the variance (�psp

2 ) to the mean (�psp)
of the PSP height, q � �psp

2 /�psp. The height of each PSP trace was
defined as the difference between the mean value of the trace during
the 15-ms window preceding stimulus onset and the peak value of the
trace within the 10-ms window centered on the peak of the trial-
averaged PSP. The variability index q, in units of millivolts, gives the
typical scale of the fluctuations in a form that allows comparison
between neurons. This measure allows us to directly compare the
measured level of response variability with an estimate of the contri-
bution from a single source of noise private to the recorded neuron—
stochastic synaptic release. For comparison, we also express our main
results in terms of the coefficient of variation [CV; a unitless measure
of variability defined as the ratio of the SD (�psp) to the mean (�psp)
of the PSP height; CV � �psp/�psp] at the end of the Variability of
large mean responses section of RESULTS.

To estimate the relative contributions to the total variability arising
from private and shared sources we developed 2 “culling” procedures,
and one estimation procedure, which we will now describe (see also
Fig. 5, which describes the procedures, and Fig. 6, which illustrates
how the procedures fit into the overall logic of our analysis).

LFP-based culling and PSP-based culling procedures

In the LFP-based culling procedure, we identified “aberrant” (see
Figs. 4 and 5) trials by first rescaling the height of the mean LFP for
each trial so as to minimize the root-mean-square (rms) error between
the LFP for that trial and the rescaled mean for a 100-ms window
beginning 15 ms before the onset of the stimulus. It can be shown that
the scale factor that minimizes the rms error is given by the ratio (x,
y)/(x, x), where x is the mean LFP and y is the LFP from a particular
trial; x and y are vectors in time and (x, y) represents the inner product
of x and y. [To see this, take the derivative of the rms error with
respect to the scale factor f, and set it to zero, d/df ¥i (xi � fy)2 � 0;
then solve for f.] Once trials with an rms error above some threshold
were identified, the corresponding whole cell records were removed
from the synaptic ensemble (see Fig. 5a) and the average variability
index, �q�tones, of the whole cell synaptic response was recalculated,

�qLFP-culled�tones, for all tones that included at least 10 trials that
survived the culling procedure. All trials with negative optimal scale
factors [i.e., (x, y)/(x, x) � 0; e.g., trial 15 in Fig. 5a, and trials 3 and
8 in Fig. 5c] were also excluded from the postculling variability
analysis. The same procedure was used for PSP-based culling with the
whole cell record used in place of the LFP (Fig. 5c). We used PSP
shape rather than PSP magnitude as the criterion for culling to avoid
inadvertently reducing the variability by preferentially removing the
largest (or smallest) PSPs.

Culling was largely insensitive to the threshold setting; for all plots
and results reported herein, we used a threshold of 0.35 times the
peak-to-trough height of each tone’s mean LFP (PSP) response for
LFP- (PSP-) based culling. In computing q values after each culling
procedure, we avoided undersampling effects by including only those
tones with at least 10 trials that remained after culling. In addition, we
included only tones that elicited mean PSP heights greater than 3 mV.
Because the PSP peak heights were measured relative to the average
value of the membrane voltage during the 15 ms preceding the
stimulus, our variability analysis was not sensitive to slow fluctuations
of the rest potential (Katz 1966). LFP peak heights were also mea-
sured relative to the average value of the LFP recording during the 15
ms preceding the stimulus.

As a control for the possibility that the variability index was
reduced partly because of undersampling after the LFP-based culling
procedure, we randomly culled an equal number of traces as the
LFP-based culling procedure from each ensemble of responses cor-
responding to a given neuron and a given tone, and found no effect
(after random culling: �q�neurons � 4.5 � 0.1 mV, n � 20 simulations;
compare with the value before culling: �q�neurons � 4.6 � 0.5 mV, n �
33 neurons; all quantities are mean � SE unless otherwise specified).
Repeating this control for the PSP-based culling procedure did reduce
the variability index (after random culling: �q�neurons � 3.67 � 0.02
mV, n � 20 simulations), despite the fact that the PSP-based culling
procedure resulted in substantially fewer trials being culled (29%)
than the LFP-based culling procedure (38%). Performing both LFP-
based and PSP-based random culling controls on the same data set
reduced the variability even further (after random culling: �q�neurons �
2.98 � 0.02, n � 20 simulations).

These reductions did not result from an undersampling bias, but
were instead due to the removal of ensembles of responses corre-

FIG. 1. Postsynaptic cortical responses recorded in
the intact animal can be affected both by sources of noise
that are private to the recorded neuron (e.g., thermal
noise, channel noise, and stochastic vesicle release at the
dendritic synapses of the recorded neuron) as well as by
fluctuations in the presynaptic spiking input to the neu-
ron, which reflect sources of variability that are shared
by other neurons in the brain.

1841SHARED AND PRIVATE VARIABILITY IN THE AUDITORY CORTEX

J Neurophysiol • VOL 92 • SEPTEMBER 2004 • www.jn.org



sponding to tones that elicited fewer than 10 nonaberrant PSPs from
at least one neuron. This is demonstrated by a second control in
which, for each neuron, we take the average of the values for the
original, unculled variability index, but only for those tones that
would have resulted in at least 10 trials after both culling procedures,
and we find that the variability index is reduced by the same amount
as we found for the combined random culling control (�q�neurons �
2.9 � 0.3 mV; n � 28 neurons). Hence, the considerable reductions
in variability resulting from PSP- and LFP-based culling were not due
to undersampling effects. Moreover, roughly half of the reduction
from the total variability across the population (�q�neurons � 4.6 � 0.5
mV, n � 33 neurons; Fig. 7c, mean of top histogram) to our best
estimate of the private level of variability (�q�neurons � 1.6 � 0.2, n �
28 neurons; Fig. 7c, mean of bottom histogram) was achieved by the
identification and removal of those ensembles of responses that were
too strongly affected by stimulus-independent population activity to
give accurate estimates for the level of private noise. Repeating these
controls for a second analysis that was restricted to tones that evoked
mean responses of �15 mV (Fig. 7d), both the random culling control
(�q�neurons � 3.20 � 0.05 mV, n � 20 simulations) and the second
control (�q�neurons � 3.2 � 0.5 mV, n � 16 neurons) resulted in
equivalent increases in the variability index, despite the fact that our
best estimate for the private variability (�q�neurons � 1.5 � 0.2 mV,
n � 16 neurons; Fig. 7d, bottom) for these high mean tones was
extremely close to the private variability we found for the full data set,
including all tones with mean responses �3 mV (�q�neurons � 1.6 �
0.2, n � 28 neurons; Fig. 7c, bottom).

LFP-based estimation procedure

For many tones, we found that there was still a substantial corre-
lation between the LFP and PSP for the ensemble of trials that
remained after LFP-based culling (e.g., Fig. 5b), implying that culling
alone did not remove all effects of shared fluctuations. Using linear
regression, we computed the best linear fit to the scatter plot across
trials of the PSP height plotted as a function of the optimal scale factor
computed for the LFP-based culling procedure (described in the last
section). The regression line has the minimum possible mean-squared
error between any linear fit and the PSP heights, and so provided the
optimal linear estimator of the PSP height hi, given the LFP scale
factor si, for the ith trial

hi
est	si
 � msi � b

where m is the slope and b is the y-intercept of the regression line. The
residual error between the estimate of the PSP height hi

est (si),
provided by the regression line, and the actual PSP height hi could not
be accounted for by fluctuations in the LFP, at least for our simple
linear estimator, and were therefore still potentially the result of
private sources of variability. Accordingly, we replaced the variance
�psp

2 appearing in the numerator of our variability index, q �
�psp

2 /�psp, with the mean-squared estimation error, ¥i�1
N [hi �

hi
est (si)]

2/(N � 1), to arrive at a tighter upper bound on the variability
due to private sources than was provided by LFP-based culling alone.
Here, we normalized the mean-squared estimation error by N � 1,
rather than N (the number of trials remaining after LFP-based culling),
to obtain an unbiased estimate of the variance of the residual fluctu-
ations.

The linear estimation procedure described above typically overes-
timates the reduction in the variability index resulting from the
removal of shared sources because we use the same data set both to fit
the parameters of the linear estimator and to compute the variance of
the estimation errors. We corrected for this by repeating the estimation
procedure after removing the correlation between the LFPs and
PSPs by randomly shuffling the order of the PSPs relative to the
LFPs. For example, after PSP- and LFP-based culling, the shuffling
estimation control reduced the variability index for the neuron

shown in Fig. 5 from �qLFP-culled,PSP-culled�tones � 0.76 mV to
�qLFP-culled,PSP-culled,shuffled,estimation�tones � 0.74 mV, so about
0.02 mV was attributed to overfitting. We therefore added 0.02
mV to the value obtained after the combined culling proce-
dures and the (unshuffled) LFP-based estimation procedure,
�qLFP-culled,PSP-culled,estimation(uncorrected)�tones � 0.55 mV, to arrive
at the corrected value �qLFP-culled,PSP-culled,estimation�tones � 0.57
mV; all reported values in the figures and text have been corrected
for overfitting of our linear estimator in this way.

Surgery

Sprague–Dawley rats (17–24 days) were anesthetized in strict
accordance with the National Institutes of Health guidelines, as
approved by the Cold Spring Harbor Laboratory Animal Care and Use
Committee. Pentobarbital (65 mg/kg) was used for 17 of the whole
cell recordings; diazepam (5 mg/kg) was also used in 3 of these cases.
For the 17 remaining neurons, recordings were performed under
urethane (1.5 g/kg) after surgery performed under ketamine (60
mg/kg) and medetomedine (0.50 mg/kg). We found no significant
difference between the neuronal variability observed during these 3
protocols (pentobarbital alone: q � 3.7 � 0.7 mV, n � 13 neurons;
pentobarbital and diazepam: q � 6.1 � 2.8 mV, n � 3 neurons;
urethane: q � 5.0 � 0.6 mV, n � 17 neurons; all quantities are
means � SE unless otherwise specified), and only a small, although
statistically significant, difference in the private component of the
variability for pentobarbital alone and urethane (pentobarbital alone:
qPSP-culled,LFP-culled&estimation � 1.1 � 0.1 mV, n � 12 neurons;
pentobarbital and diazepam: qPSP-culled,LFP-culled&estimation � 1.5 �
0.6 mV, n � 3 neurons; urethane: qPSP-culled,LFP-culled&estimation �
2.2 � 0.3 mV, n � 13 neurons). We therefore pooled all data for our
group statistics.

After the animal was deeply anesthetized, it was placed in a custom
naso-orbital restraint that left the ears free and clear. Local anesthetic
was applied to the scalp, and a 1 � 2-mm craniotomy and durotomy
were performed above the left auditory cortex. A cisternal drain was
performed before the craniotomy. Before the introduction of elec-
trodes, the cortex was covered with physiological buffer (in mM:
NaCl, 127; Na2CO3, 25; NaH2PO4, 1.25; KCl, 2.5; MgCl2, 1; glucose,
25) mixed with 1.5% agar. Temperature was monitored rectally and
maintained at 37°C using a feedback-controlled blanket (Harvard
Apparatus). Breathing and response to noxious stimuli were moni-
tored throughout the experiment, and supplemental dosages of pen-
tobarbital or urethane were provided when required.

Stimuli

Stimulation delivery followed essentially the same protocol as in
DeWeese et al. (2003). Stimuli consisted of 25-ms pure-tone pips of
32 different frequencies (logarithmically spaced between 2 kHz and
46,731 Hz) with 5-ms 0 to 100% cosine-squared ramps applied to the
onset and termination of each pip. All 32 tones were repeatedly
presented at 65 dB in a fixed pseudo-random order at a rate of 2
tones/s. All experiments were conducted in a double-walled sound
booth (IAC). Free-field stimuli were presented using a System II
(TDT) running on a host PC connected to an amplifier (Stax SRM
313), which drove a calibrated electrostatic speaker (Stax SR303).
The speaker was placed 6 cm to the right of, and at the same elevation
as, the rat’s head. The head was rotated to the right by an angle
between 60 and 90° about the rostral–caudal axis, so that the plane of
the craniotomy was nearly horizontal.

LFP and whole cell patch-clamp recording

We used standard blind whole cell patch-clamp recording tech-
niques, modified from brain slice recordings (Stevens and Zador
1998). Membrane potential was sampled at 4 kHz in current-clamp
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mode (I � 0) using an Axopatch 200B amplifier (Axon Instruments)
with no on-line series resistance compensation. Data were acquired
using an Igor-based system (written by B. Sabatini), controlling a
National Instruments card on a Dell PC computer. For some whole
cell recordings, recording pipettes were filled with an internal solution
consisting of (in mM): KCl, 10; K-gluconate, 140; HEPES, 10;
MgCl2, 2; CaCl2, 0.05; Mg-ATP, 4; Na2-GTP, 0.4; Na2-phosphocre-
atine, 10; BAPTA, 10; and biocytin, 1%; pH � 7.25; diluted to 290
mOsm. The remaining whole cell recordings had an additional 1%
biocytin, but did not include the 10 mM KCl. For all whole cell
recordings used in the variability analysis, the fast sodium channel
blocker QX-314 (5 mM), which also blocks some other activity-
evoked conductances, was added to the intracellular solution to block
sodium channels, and therefore prevent spiking. Consequently, spik-
ing was rare in these neurons; trials containing the occasional spike
were excluded from the variability analysis. QX-314 was not used for
the recordings after tetrodotoxin (TTX) application. Electrodes were
pulled from filamented, thin-walled borosilicate glass (1.5 mm OD,
1.17 mm ID; World Precision Instruments) on a vertical Narishige
2-stage puller. Resistance to the bath was 3–5 M� before seal
formation. Recordings were performed throughout auditory cortex at
electrode depths ranging from 180 to 834 microns below the cortical
surface; results did not vary systematically with electrode depth.

Local field potentials (LFPs) were recorded using a second whole
cell electrode (filled with the physiological buffer described above in
Surgery) and a second Axopatch 200B. LFP electrodes were placed
roughly 0.550 mm below the cortical surface within about 0.5 mm of
the whole cell electrode.

Of the 61 neurons recorded for the variability analysis, 33 (from 21
animals) passed our criteria for inclusion: recordings had to be stable
for at least 10 consecutive repetitions of each of the 32 tones; the rest
potential had to be at or below �55 mV, corrected for the liquid
junction potential, which we calculated to be 12 mV for our internal
solution; and at least one tone had to evoke a mean response �3 mV.
We presented 18 � 2 repetitions (mean � SE, n � 33 neurons;
range � 10 to 63 repetitions) of each tone to every neuron that was
used in our variability analysis. Twenty-nine of the 33 neurons in the
variability data set met the additional criterion for inclusion in the
LFP-based culling analysis: the simultaneously recorded LFP had to
be stable and robust. We found no correlation between response
variability and access resistance (qR-series�median � 4.2 � 0.7 mV,
n � 17 cells; qR-series�median � 4.9 � 0.7 mV, n � 16 cells; median
access resistance � 60 M�). Input resistance ranged from 19 to 141
3–5 M� (median � 64 3–5 M�). Rest potential ranged from �58 to
�92 mV (median � �70), after being corrected for the liquid
junction potential. Of the 21 neurons recorded after TTX application,
6 recordings had sufficiently low recording noise to allow unambig-
uous detection of miniature excitatory postsynaptic potentials
(mEPSPs).

TTX application

For the recordings of mEPSPs, a standing pool of 1.0 mM TTX in
a physiological buffer (see Surgery above) was applied to the surface
of the cortex while playing 65-dB stimuli and monitoring the LFP.
Whole cell recordings were attempted only after complete abolition of
all evoked and spontaneous LFP responses. As is commonly done
when measuring miniature PSPs in vitro, we used TTX to prevent
spiking in any of the neuron’s presynaptic fibers. Subsequently, the
only PSPs we observed were the result of the stochastic, spontaneous
release of individual synaptic vesicles. Spontaneous release events are
statistically independent, so simultaneous release events are infre-
quent—at the level of chance—allowing us to obtain a rough estimate
of the distribution of the sizes of individual mEPSPs.

R E S U L T S

To assess the trial-to-trial variability of tone-evoked re-
sponses in vivo, we presented 32 brief pure-tone pips of
different frequencies and fixed intensity while recording from
neurons in the auditory cortex of anesthetized rats. Each pip
was presented repeatedly, allowing us to assess the variability
of the synaptic response to multiple presentations of each
stimulus. We used in vivo whole cell patch-clamp methods
(Borg-Graham et al. 1998; Ferster and Jagadeesh 1992; Hirsch
et al. 1995; Metherate and Ashe 1993b; Moore and Nelson
1998; Nelson et al. 1994; Zhu and Connors 1999) to record the
PSPs evoked by this ensemble of pure-tone pips.

Stereotypy of tone-evoked subthreshold responses

In all neurons, tones evoked brief short-latency PSPs, similar
to those observed both in vitro (Atzori et al. 2001; Hefti and
Smith 2000) and in vivo, in response to electrical stimulation
(Metherate and Ashe 1993a; Mitani et al. 1985). These stereo-
typed responses differ markedly from typical sensory stimulus-
evoked responses in the visual cortex, where responses are less
precisely locked to the stimulus and often last for hundreds of
milliseconds (Ferster and Jagadeesh 1992). Figure 2a shows
the mean response to each of 32 different tones, ranging in
frequency from 2 to 47 kHz. For this neuron, the latency from
stimulus onset to the peak of the mean response ranged from 27
to 42 ms, and the peak height ranged from 1.2 to 18 mV across
the stimulus ensemble. Rescaling and shifting these mean
responses reveal that they are all strikingly similar in shape
(Fig. 2b), despite their widely disparate absolute sizes and
latencies.

The similarity of the mean tone-evoked responses elicited by
different tones was characteristic of many auditory neurons
from which we recorded. We often also observed a striking
similarity among the individual PSPs recorded on different

FIG. 2. In vivo sensory evoked synaptic responses to different acoustic
tones can have different magnitudes and latencies, but similar shapes. A: in
vivo whole cell current-clamp recording (with QX-314 in the recording pipette
to prevent spiking) of one neuron’s mean response to each of 32 different
25-ms, 65-dB tones (time course of stimulus envelope at bottom). Each trace is
the mean response to 20 presentations of the same tone. Frequencies of the 32
tones are logarithmically spaced between 2,000 and 46,731 Hz. B: 32 mean
responses shown in the last panel have very similar shapes once their heights
have been normalized, and they have been aligned vertically and horizontally.
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trials in response to the same tone. Thus for some neurons, the
trial-to-trial variability of the PSPs elicited by repeated presen-
tations of the same tone was remarkably low (Fig. 3a). These
responses make only small deviations about the mean, and the
response on each trial looks like a scaled version of the
stereotyped average response. Note that in this figure, re-
sponses have been neither shifted in time nor rescaled.

Trial-to-trial response variability

We quantified the deviations about the mean response to
each tone in terms of the variability index q, defined as the ratio
of the variance (�psp

2 ) to the mean (�psp) of the PSP height,
q � �psp

2 /�psp. The variability index q, in units of millivolts,
gives the typical scale of the fluctuations in a form that allows
comparison between neurons. The total variability of the re-
sponses shown in Fig. 3a was 0.23 mV. Averaging across
tones, the total variability for this neuron was 0.88 mV (Fig.
3a, inset), and was comparably low (1–2 mV) in about a fifth
(7/33) of the neurons in our sample (Fig. 3b). Note that because
the index q is based on the total response variability, it reflects
not only on the real underlying response variability, but also on
any additional artifactual noise introduced by the experimental
apparatus, such as electrical noise. The index q thus represents
an overestimate of the total variability, which in this case (Fig.
3a) is most likely �0.23 mV.

The neuron shown in Fig. 3a was among the most reliable
we recorded. Across the population, the variability index
ranged over more than an order of magnitude, from �1 to �10
mV; about half (18/33) of the neurons showed a high variabil-
ity index (4–12 mV; Fig. 3b). Variability showed no system-
atic dependency on recording depth. Thus whereas the sub-
threshold activity of some auditory neurons provided a faithful
and reliable reflection of the acoustic stimulus, the activity of
others did not.

Partitioning variability into private and shared components

We partitioned this total subthreshold variability into a
private component (which includes synaptic, thermal, and
other sources local to the recorded cell) and a shared compo-
nent arising from network interactions. There are many private
sources of noise, including synaptic variability arising from
stochastic quantal release, as well as from channel and thermal
components (DeFelice 1981; Manwani and Koch 1999, 2001).
Under some conditions, private sources such as these result in
synaptic responses that consist of a small amount of noise
superimposed on a stereotyped PSP. Private variability arises
from fundamental biophysical limitations on neuronal process-
ing, and therefore represents a lower bound on the total
variability—a “noise floor” below which the total variability
cannot fall. Shared sources, by contrast, arise from network

FIG. 3. For some cortical neurons, in vivo tri-
al-to-trial variability of sensory-evoked synaptic
responses is low. A: for the same neuron as in Fig.
2, synaptic responses to 20 consecutive presenta-
tions of the same tone were clustered tightly about
the mean (thick gray trace); each black trace
represents a single trial. For this tone, the vari-
ability index q32 kHz � 0.23 mV. Responses were
aligned vertically by setting the mean value dur-
ing the 15 ms preceding stimulus onset to zero,
but note that responses were neither shifted in
time nor rescaled. Average variability across
tones was low (�q�tones � 0.88 mV) for this cell, as
illustrated by the frequency histogram of variabil-
ity indices for all 26 tones that produced a mean
postsynaptic potential (PSP) �3 mV (inset: mean
indicated by dashed line). B: roughly a fifth (7/33)
of the neurons exhibited low variability when
averaged across tones (1 mV � q � 2 mV),
whereas about half (18/33) were much more vari-
able (4 mV � q � 12 mV).
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interactions, and are common to a population of neurons
(Abbott and Dayan 1999; Arieli et al. 1996; Gawne and
Richmond 1993). In this view, private variability represents
true “noise”—a real, irreversible corruption of the signal—
whereas shared fluctuations might include a computationally
significant signal.

The division of total variability into private and shared
components can be understood in the context of the following
thought experiment. Suppose it were possible to measure the
activity of all the neurons in the brain—all except for one lone
test cortical neuron. Suppose further that one could deduce the
full circuit diagram of the brain, including complete knowledge
of synaptic connectivity, strengths, and so forth. Under these
conditions, how well could one predict the input to the spike-
generating mechanism of that lone test neuron based on all past
activity of the rest of the neurons in the circuit? If the brain
were a completely deterministic and noiseless device, then the
time course of the somatic membrane potential of the test
neuron could be predicted with perfect accuracy. On the other
hand, if the membrane potential of the test neuron could not be
predicted perfectly, the prediction error would necessarily be
ascribed to noise introduced privately by that lone neuron. This
experiment, then, would reveal the extent to which neural
responses are truly noisy, and thereby shed light on the strat-
egies developed to compute in the face of noise.

This thought experiment suggests the partitioning of a neuron’s
subthreshold response variability into 2 components. The total
trial-to-trial variability (Vtotal) of the synaptic response to repeated
presentations of the same sensory signal can be thought of as the
sum of private (Vprivate) and shared (Vshared) components

Vtotal � Vprivate � Vshared (1)

Private refers to all sources that cause fluctuations only in
the neuron under study, whereas shared refers to sources that
produce correlated fluctuations—fluctuations that occur in sev-
eral neurons at once. In terms of our thought experiment then,
Vtotal represents the lone test neuron’s response variability
across all trials regardless of how the other neurons in the brain
respond, whereas Vprivate represents the trial-to-trial variability
of the residual “prediction error”—the discrepancy between the
predicted response of the neuron based on all other brain
activity, and the actual response of the neuron. From Eq. 1,
Vshared is just the difference between these quantities; it repre-
sents the residual variability that cannot be accounted for by
private noise sources alone.

Thus in practical terms, Eq. 1 defines what we mean by the
shared component of the total variability Vshared. No matter
how one chooses to quantify variability, the other 2 variables in
the equation can always be defined as follows: Vtotal � V[P(r)]
and Vprivate � V[P(r � AP)], where V[ � ] is the functional used
to quantify variability, P(r) is the average probability distribu-
tion of a neuron’s responses (r) after a particular stimulus, and
P(r � AP) is the conditional distribution of the neuron’s re-
sponses given complete knowledge of the presynaptic action
potentials (AP) that occurred on a given trial. Vshared, then, is
whatever variability is left over after the private component has
been accounted for: Vshared � Vtotal � Vprivate. If we choose

variance (or variance normalized by the mean across all trials)
as our measure of variability, and if all shared contributions (s)
and private contributions (p) to the neuron’s response are
statistically independent (�sp� � �s��p�, where �. . .� represents
an average across trials) and additive (r � s 
 p), then Vshared

reduces to V[P(s)] so that: V[P(r)] � V[P(s)] 
 V[P(p)], as one
would intuitively expect.

Partitioning variability based on the LFP

With these ideas in mind, we noticed that in many cases the
largest fluctuations in the whole cell records did not seem to be
merely rescaled versions of the canonical response, but seemed
instead qualitatively different (Fig. 4, a and c). Such aberrant
trials were largely responsible for the higher variability indices
in these neurons. The existence of such aberrant responses
suggested that some fraction of the variability exhibited by the
more variable neurons was a consequence of trial-to-trial
variation of the presynaptic spiking input, rather than of noise
sources private to each neuron.

To the extent that shared, circuit-wide fluctuations cause
these aberrant responses, one might expect the activity of
nearby neurons to be similarly affected (Buracas et al. 1998;
Lampl et al. 1999). We therefore devised a procedure to
estimate the contribution to each neuron’s variability from
shared sources. This procedure relied on a second glass elec-
trode, positioned near (�0.5 mm) the primary whole cell
electrode, to record simultaneously the LFP. The LFP provides
a gross measure of the correlated synaptic input to a region
(Arieli et al. 1996; Buracas et al. 1998); it reflects only those
sources of variability that are shared by many neurons.

This procedure consisted of 2 operations, which we will call
“culling” and “estimation” (Fig. 6). Culling can be thought of
as a way of removing outliers (aberrant responses) from the
ensemble, whereas estimation can be thought of as an attempt
to explain the residual variability with a linear model. For the
culling procedure, we first identified individual LFP responses
that did not conform to the canonical shape obtained by
averaging all the LFP responses to the same tone (Fig. 5a; see
METHODS). For each LFP elicited by a particular tone, we
rescaled the average LFP for that tone, and then excluded those
traces for which the mean-squared error between the particular
response and rescaled average exceeded a threshold. The
whole cell records corresponding to these aberrant LFP traces
were then removed from the synaptic ensemble, and the vari-
ability index of the whole cell synaptic response was recalcu-
lated. Across the population, the distribution of errors between
individual LFP traces and the mean response was not strictly
bimodal for all neurons, but rather formed a continuum be-
tween dramatically aberrant responses (e.g., Fig. 4) and re-
sponses in which the deviations were smaller.

Across our sample, LFP-based culling reduced the mean
variability by 35% (from 4.8 � 0.5 to 3.1 � 0.1 mV; n � 29
neurons), yet there was still a correlation between the LFP and
the whole cell record for the subset of unculled trials (Fig. 5b),
implying that not all shared sources of variability were ac-
counted for by LFP-based culling alone. We exploited this
remaining correlation by devising a second procedure to esti-
mate the trial-to-trial fluctuations in the whole cell record based
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on the fluctuations in the LFP responses. By substituting the
PSP variance appearing in the numerator of the variability
index with the mean-square error of this LFP-based estimate,
we obtained a better estimate of the contribution to the total
variability arising from private sources (see METHODS).

The combined effect of the LFP-based culling and estima-
tion procedures was to reduce the variability by an average of
40% across the population (qLFP-culled&estimation � 2.9 mV �
0.3 mV; n � 29 neurons; Fig. 7, a and c). In fact, these
procedures reduced the variability in almost all (26/29) neu-
rons, and in some cases the reduction was dramatic—more
than a 3-fold reduction (6.3 to 1.7 mV). As with LFP-based
culling alone, such large reductions were observed only when
the total variability was large; when the total variability was
already small (�1 mV), these procedures typically had little or
no effect, consistent with the idea that the total variability was
close to the noise floor for these neurons.

We emphasize that any reduction of the variability index
(recorded by the whole cell electrode) obtained by LFP-based
culling and estimation arose from the elimination of sources
that were not private to the neuron, given that the evidence for

excluding or estimating a response from the PSP ensemble
relied solely on activity recorded on an independent, second
(LFP) electrode.

We wondered whether differences in the total variability
among different neurons in our sample might have arisen from
gross differences in the state of the animal during the experi-
ment (e.g., because of different anesthesia levels). If this were
the case, one might expect that neurons in which the total
variability was high would be associated with high variability
in the simultaneously recorded LFP as well. We therefore
compared the CV of a simultaneously recorded LFP of the
more variable neurons (CV � 0.66 � 0.06; n � 14 neurons;
mean � SE) and the less variable neurons (CV � 0.74 � 0.09;
n � 15 neurons). We found no significant difference (P � 0.5;
Student’s t-test) between the associated LFPs; in fact, there
was a slight trend in the opposite direction. Thus differences in
the total variability across the neuronal population cannot be
readily explained by gross, state-dependent differences evident
in the LFP. Our data, then, are consistent with a model in
which aberrant events in the LFP are reflected better in some
neurons than in others.

FIG. 4. For some neurons, stimulus-independent, circuit-wide activity strongly affected evoked cortical responses on some trials. A:
an example of a neuron that exhibited large fluctuations as a result of shared sources of input variability. Most of the PSPs (top) were
well described as rescaled versions of the mean response (upper green trace), but one PSP (top red trace) was qualitatively different.
Simultaneously recorded local field potentials (LFPs; bottom) from a second nearby (�0.5 mm) electrode followed the same pattern: the
LFP (lower red trace) corresponding to the aberrant PSP was also an outlier, indicating a shared source of variability. B: scatter plot of
the root-mean-squared (rms) error of the LFP vs. the rms error of the PSP shows that the aberrant LFP and whole cell traces in the
previous panel are both outliers in terms of their rms errors. For both LFPs and PSPs, the rms error was computed between the voltage
trace on a given trial and the rescaled mean response for the duration of the 100-ms interval beginning 15 ms before stimulus onset; the
mean was optimally rescaled for each trace so that large rms errors indicate aberrant shapes, not unusually large or small response sizes
(see METHODS and Fig. 5 for further details). Dashed vertical (dashed horizontal) line indicates the threshold used for LFP- (PSP-) based
culling. In this example, PSP-based culling removes only the most aberrant trace, whereas LFP culling removes that trace and 3 others.
C: an example of a set of responses from the same neuron as in the previous 2 panels containing an aberrant trial that happens to pass
very close to the peak of the mean response; for this tone, PSP-based culling increased the variability index (q9.2 Hz � 0.47 mV,
q9.2 Hz-PSP-culled � 0.57 mV). Although PSP-based culling reduced the tone-averaged variability for all but one neuron, variability
increased after PSP-based culling for at least one tone in half (18/33) of the population.
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FIG. 5. Detailed examples of the LFP- and PSP-based culling procedures used to determine the contribution of shared,
circuit-level fluctuations to each neuron’s total subthreshold variability. A: LFP-based culling procedure. For each presentation of
a given tone, we rescaled the height of the mean LFP for that tone (top green trace) so as to minimize the rms error between the
rescaled mean trace (left green traces) and the LFP for that trial (left black traces); for each trial, the simultaneously recorded whole
cell trace (from a different neuron than that in previous figures) is shown on the right. On trials 3, 8, and 15, the rms error was
greater than the threshold, so the whole cell traces for these trials were rejected (red traces with “No” symbols), or “culled,” from
the ensemble of PSPs before repeating the variability analysis (see METHODS for further details). B: for the same neuron as in the
last panel, a scatter plot of PSP height vs. LFP height for all 60 responses to the same tone that were not removed during the
LFP-based culling procedure shows a clear correlation between the 2 variables (linear fit in red), indicating that LFP-based culling
did not remove the effect of all shared sources of variability. C: PSP-based culling procedure. For each presentation of a given tone,
we rescaled the height of the mean PSP for that tone (top green trace) so as to minimize the rms error between the rescaled mean
trace and the PSP for that trial (black traces). On trials 3, 8, and 10, the rms error was greater than the threshold so these traces
were rejected (red traces with “No” symbols) from the ensemble of PSPs before the variability analysis was repeated. Optimally
rescaling the mean response before computing the rms error ensures that traces are culled based on their shape rather than their size,
thus avoiding the confound of trivially reducing the variability by systematically removing the largest (or smallest) traces.
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Partitioning variability based on PSP shape

Although the LFP-based culling and estimation procedures
effectively reduced variability in some neurons, in other neu-
rons they had little effect, even when the total variability was
large. This apparent failure could have been attributable to real
heterogeneity in the noise floor for different neurons, or to a
failure of the LFP-based procedures themselves. That we see

any effect at all by culling and estimation based on the LFP
might seem surprising because the activity monitored by the
LFP electrode need not reflect the population causing the
aberrant activity. For example, it is possible that LFP-based
culling would have been more effective in some recordings if
the LFP electrode had been positioned closer to the whole cell
recording electrode.

FIG. 6. Schematic showing the basic steps in estimating the private contribution to the total variability. For each neuron’s set
of responses to a given tone, we first quantify the total variability by computing the ratio of the variance to the mean (variability
index) of the heights of the full ensemble of PSPs (top). Height of each PSP is computed at the highest point within a 10-ms window
(vertical gray bar) centered on the peak of the mean PSP trace. Second, we use the simultaneously recorded LFP, recorded about
0.5 mm away from the recorded neuron, to identify trials that were strongly affected by shared, circuit-wide fluctuations (LFP-based
culling procedure; see METHODS and Fig. 5a); these “aberrant” trials are removed from the PSP ensemble (middle). Third, we use
a simple LFP-based estimation procedure (see METHODS and Fig. 5b) to predict the height of the PSPs (small vertical black bars
within the gray bar at bottom) for all unculled trials. Finally, we take the ratio of the variance of the errors between the true PSP
heights and our LFP-based estimate, and divide by the mean PSP height to arrive at an upper bound on the amount of variability
attributable to private sources alone. To obtain our “best estimate” of the variability attributed to private noise sources, we repeat
the above procedure after first performing the PSP-based culling procedure (see METHODS and Fig. 5c).

1848 M. R. DEWEESE AND A. M. ZADOR

J Neurophysiol • VOL 92 • SEPTEMBER 2004 • www.jn.org



We therefore adopted an alternative culling procedure based
on the shape of the PSP itself (Fig. 5c; see METHODS). Motivated
by the stereotyped time course of the PSP (Figs. 3a and 4, a
and c), we reasoned that the aberrant responses identified by
the LFP recording might also give rise to similarly aberrant
PSP responses. Culling based on PSP shape (also called tem-

plate-based selection) is sometimes used in in vitro brain slice
experiments to distinguish stimulus-evoked and spontaneous
responses (Dobrunz and Stevens 1997; Liao et al. 1992). In
brain slices, however, PSP-culling typically leads to only a
relatively small reduction in variability, in that the amount of
spontaneous activity is usually quite small.

FIG. 7. Circuit-wide fluctuations can account for over 80% of the trial-to-trial variability of sensory-evoked synaptic responses
in vivo, yet all neurons had comparable levels of private noise. A: scatter plot of the upper bound on the private variability provided
by qLFP-culled&estimation (the variability index after the LFP-based culling and estimation procedures) as a function of the total
variability q (the variability index of the original data set) shows that the combined LFP-based operations reduced the variability
index by as much as 71%, and nearly always resulted in a reduction (total variability � �q�neurons � 4.6 � 0.5 mV, n � 33 neurons;
upper bound on private noise � �qLFP-culled&estimation�neurons � 2.9 � 0.3 mV, n � 29 neurons; uncertainties are SE values across
cells). Error bars in figure are �SE across tones. B: scatter plot of our best estimate of the private variability, qPSP-culled,LFP-

culled&estimation, as a function of the total variability q, demonstrates that PSP-based culling followed by the LFP-based culling and
estimation procedures reduced the variability by as much as 85%, and that the level of variability attributed to private noise sources
was comparable, and low, for all neurons (best estimate of private variability � �qPSP-culled,LFP-culled&estimation�neurons � 1.6 � 0.2
mV, n � 28 neurons). C: a frequency histogram (top) of the tone-averaged variability index q shows that roughly half of the neurons
were highly variable, whereas others displayed low variability. LFP-based culling and estimation procedures performed alone
(middle) and following PSP-based culling (bottom) revealed that shared sources of variability accounted for the wide disparity
across the population; all neurons had comparable levels of private noise (same data as in Figs. 3b and 7, a and b replotted;
histogram means indicated by dashed lines). Roughly half of this reduction in variability was attributed to the identification and
removal of those tones that elicited fewer than 10 nonaberrant trials from neurons most susceptible to network fluctuations (see
METHODS). D: same as the previous panel, except that here we include data only from tones that evoked mean PSPs of �15 mV,
which would have been more likely to affect the variability of the neuron’s spiking output than other tones. Total variability of these
responses was less than that of the full data set (top; �q�neurons � 2.9 � 0.4 mV, n � 19 neurons), but the upper bound on the private
variability provided by the LFP-based culling and estimation procedures (middle; �qLFP-culledandestimation�neurons � 1.9 � 0.3 mV; n �
16 neurons), as well as the combined PSP- and LFP-based procedures (bottom; �qPSP-culled,LFP-culled&estimation�neurons � 1.5 � 0.2
mV; n � 16 neurons), resulted in nearly the same level of private variability as the combined procedures on the full data set (b,
and bottom of c).
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The PSP-based culling procedure was similar to LFP-based cull-
ing: For each PSP elicited by a particular tone we rescaled the average
PSP for that tone, excluded those traces for which the mean-squared
error between them exceeded a threshold, and then recomputed the
variability index for the remaining PSP responses. By relying on the
shape, rather than the magnitude, of individual PSPs, we avoided the
artifactual lowering of variability that might have occurred had we
simply removed the largest (or smallest) PSPs.

On average, PSP-based culling reduced the variability index to
a level comparable to that of the combined LFP-based procedures
(qPSP-culled � 2.2 � 0.3 mV; n � 33 neurons), but there were
differences. As with the LFP-based procedures, PSP-based culling
had little effect on the least variable neurons; in fact, PSP-based
culling was slightly less effective for these neurons. However, for
the more variable neurons, the reduction in variability after PSP-
based culling was slightly more systematic—in almost all (32/33)
neurons, the variability index after PSP-based culling was at most
about 3 mV, compared with several higher values of about 5 mV
for the combined LFP-based procedures (Fig. 5, a–c). A likely
explanation for the greater efficacy of PSP-based culling for the
most variable neurons is that it necessarily monitors the appropri-
ate population of inputs. By contrast, LFP-based procedures can
identify only the subset of shared fluctuations that affect neurons
in the vicinity of the second (LFP) electrode, although they are
more effective at removing smaller shared fluctuations within this
subset because of the greater sensitivity of the LFP-based estima-
tion procedure compared with culling.

We note that PSP-based culling could conceivably be influenced
by both private and shared noise sources and consequently does not,
unlike the LFP-based culling and estimation procedures, provide an
upper bound on the private noise contribution to the variability index.
Nevertheless, it seems in practice unlikely that private noise sources
could induce trial-to-trial variability in PSP height—particularly un-
der conditions when many active conductances are blocked with
QX-314—while at the same time preserving the precise waveform of
the PSP. Moreover, the fact that both culling procedures were effec-
tive seems noteworthy, given that neither is mathematically con-
strained to reduce the variability at all; indeed, each procedure
actually increased the variability in some cases (e.g., see Figs. 4c, 7a).
We thus view the LFP- and PSP-based procedures as complementary
approaches: the LFP-based procedures provide a bound, but are blind
to some shared sources of variability that can be quite significant,
whereas PSP-based culling effectively removes all strong sources of
shared variability, but is generally insensitive to small fluctuations.
Combining both of these approaches resulted in an even greater
reduction in variability (qPSP-culled,LFP-culled&estimation � 1.6 � 0.2
mV; Fig. 7, b and c), most likely providing a more accurate estimate
of the true underlying variability attributable to private sources than
either the LFP- or PSP-based method performed alone.

Variability of large mean responses

In all of the preceding analysis, we included responses to
all tones from every neuron, provided we had at least 10
trials and mean responses of at least 3 mV for any given
tone. However, tones that elicit larger PSPs on average
probably have a stronger effect on the variability of the
spiking outputs of the recorded neuron because these are
more likely to evoke PSPs in the range of spike threshold.
We therefore repeated the above analyses for the subset of
tones with mean responses of �15 mV. As shown in Fig. 7d,

the total variability of these large mean responses (�q�neurons
� 2.9 � 0.4 mV, n � 19 neurons) was less than that of the
full set of responses, yet they displayed the same level of
private noise (�qPSP-culled,LFP-culled&estimation�neurons � 1.5 �
0.2 mV; n � 16 neurons) as the average tone. In fact, for
these high mean responses, the upper bound on the level of
private noise provided by the LFP-based procedures alone
(�qLFP-culled&estimation�neurons � 1.9 � 0.3 mV; n � 16 neu-
rons) was in agreement with our best estimate for the private
noise level.

Expressed in terms of the coefficient of variation, the total
variability of the high mean responses (�CV�neurons � 0.37 �
0.03, n � 19 neurons) was lower than the total variability of the
full data set (�CV�neurons � 0.73 � 0.04, n � 33 neurons).
However, the private contribution to the variability of the large
mean responses (�CVPSP-culled,LFP-culled&estimation�neurons �
0.27 � 0.01, n � 16 neurons) was also significantly
lower than the private contribution to the full data set
(�CVPSP-culled,LFP-culled&estimation�neurons � 0.41 � 0.02, n �
28 neurons), in contrast to what we found for the variability
index. Thus the variability index is apparently a more
consistent measure of private variability for different mean
response sizes.

Spontaneous events veto evoked responses

Our finding that spontaneous circuit activity interacts with
evoked sensory responses is consistent with earlier reports
using optical and electrophysiological methods (Arieli et al.
1995, 1996; Buracas et al. 1998). However, these earlier
studies found a positive correlation between spontaneous and
evoked responses: greater ongoing activity preceding the sen-
sory stimulus resulted in an enhancement of the evoked response.
Based on this, one might have expected that the magnitude of
spontaneous activity reflected in the LFP preceding the stim-
ulus would have been positively correlated with the strength of
the tone-evoked PSP. Surprisingly, we found instead just the
opposite: there was a systematic negative correlation (correla-
tion coefficient � �0.14 � 0.02; n � 29 neurons). Further-
more, we found that the magnitude of spontaneous subthresh-
old membrane potential events preceding the stimulus was
anticorrelated with the strength of tone-evoked responses in
91% (30/33) of the neurons in our sample (correlation coeffi-
cient � �0.22 � 0.03; n � 33 neurons; Fig. 8, c and d).

A striking example of this effect is shown in Fig. 8, a and b
(see also Fig. 4, a and c and trials 3, 8, and 10 of Fig. 5), where
both the whole cell record and the LFP reveal a large sponta-
neous event preceding the stimulus, but no response after the
onset of the tone. It is as if the spontaneous event “vetoed” the
evoked response. The occurrence of this type of behavior in the
whole cell record was typically mirrored by the LFP, implying
that the veto involved and affected a population of neurons.
Thus one might think of this phenomenon as a circuit-level
veto of evoked responses. This circuit-level veto has not been
previously described, and its role is at present uncertain (but
see Loebel and Tsodyks 2002; Tsodyks et al. 2000).

Comparison to the contribution from stochastic
synaptic release

The most reliable neuron showed an average total vari-
ability of 0.88 mV, and the most reliable response elicited in
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this neuron was 0.23 mV. In what sense are these numbers
small? To address this question, we can try to relate these in
vivo values to the many possible biophysical sources of
private noise, including thermal, channel, synaptic, and

others. Theoretical work suggests that synaptic variability
arising from stochastic synaptic release may be the domi-
nant source of private noise (Manwani and Koch 2001;
Zador 1998).

FIG. 8. Substantial spontaneous activity preceding the stimulus is correlated with a diminished or aberrant evoked response. A: for the
same neuron as in Fig. 5, most of the 63 responses (black traces) to the same tone look like rescaled versions of the mean response (green
trace), but some, like the red trace, have an aberrant shape. B: here the red aberrant trace from the previous panel is extended forward
and backward in time (top trace); the red half of the trace begins at stimulus onset. Expanded timeline shows that this aberrant response
follows a large spontaneous event that preceded the stimulus. Both the large spontaneous event and the apparent absence of an evoked
response are mirrored by the LFP (bottom trace), which was recorded about 0.5 mm away, indicating that this preclusion phenomenon
affects a large population. Mean evoked PSP and LFP traces (green) are shown for comparison. C: for the same neuron as in the previous
panels, the size of the maximum spontaneous event during the 100 ms preceding each stimulus presentation is anticorrelated with the
magnitude of the evoked response. d: magnitude of the maximum spontaneous event preceding the stimulus is anticorrelated with the
evoked PSP for 91% (30/33) of the population (correlation coefficient � �0.22 � 0.03; n � 33 neurons).
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Under the assumptions of classical quantal analysis (Katz
1966), the variability index can be interpreted in terms of
the quantal model of synaptic release. In particular, if all the
noise were the result of quantal fluctuations and if the
assumptions of quantal analysis were met, then the variabil-
ity index q would be equal to the quantal size—the response
elicited by a single vesicle of neurotransmitter. In practice,
the variability index as we have defined it operationally
includes other noise sources as well, so the experimentally
measured variability index q will typically be greater than
the quantal size.

We therefore compared the measured variability to that
expected from quantal fluctuations. Following classical quantal
analysis, we recorded spontaneous PSPs in vivo while evoked
activity was silenced with TTX to obtain an independent
estimate of the quantal size. The mean spontaneous mEPSP,
Qmini, provides an approximation of Q, the average response
elicited by a single vesicle of evoked neurotransmitter, under
the simplest quantal assumptions. Our estimate of the distribu-
tion of mEPSPs in vivo (Qmini � 0.39 � 0.08 mV; n � 6
neurons) is consistent with some previous estimates (0.35 mV)
obtained in vitro (Gil et al. 1999; see also Stevens and Zador
1998; but cf. Pare et al. 1997). The width of the distribution of
mEPSPs sizes (CV � 0.36 � 0.03; n � 6 neurons) may have
been attributable to electrotonic effects, as well as to intrinsic
variability in quantal size across different synapses and at the
same synapse (Bekkers et al. 1990).

We did not record spontaneous miniature PSPs in the same
set of neurons used in the variability analysis presented above.
Moreover, for any given neuron, the distribution of synapses
reflected by an observed mEPSP distribution might well be
different from the subset of synapses participating in stimulus-
evoked responses. Accordingly, we interpret Qmini merely as a
rough estimate of the contribution of stochastic release to
response variability.

For 42% (14/33) of the neurons, at least one tone elicited
responses whose variability index q was within a factor of 2 of
the 0.38 mV expected from stochastic release alone. In the
most extreme cases (e.g., Fig. 3a), effectively all of the vari-
ability could be ascribed to stochastic release. Our experimen-
tal results thus support the idea that a single private noise
source, stochastic quantal release, may constitute the largest
single source of private noise in vivo. The remarkable fact that,
at least 5 synapses from the auditory periphery, variability can
approach the theoretical lower limit raises the possibility that
special mechanisms prevent the noise from growing as the
neural signal propagates along this neural pathway (cf. Shadlen
and Newsome 1998).

D I S C U S S I O N

Using whole cell patch-clamp recording, we have performed
the first analysis of the synaptic variability underlying sound-
evoked responses in the auditory cortex. We partitioned the
variability of subthreshold membrane potential fluctuations
into private and shared components. We found that the private
component was surprisingly small, about 1–3 mV, and rela-
tively homogeneous across the population. The shared compo-
nent was often much larger, and showed more heterogeneity
across the population, ranging from about 0 to 10 mV. The
remarkably low level of private variability suggests that corti-

cal neurons may operate in the low-noise regime, and that the
large variability typically observed during sensory-evoked re-
sponses need not reflect an irreversible corruption of the
sensory signal.

It has long been known that the activity of individual
neurons can be well correlated with the network in which they
are embedded, indicating that shared variability can be large.
For example, both spiking and intracellular activity can be
strongly correlated with the electrical (e.g., EEG) or optical
measures of population activity, during both evoked and spon-
taneous activity (Thatcher and John 1977). In one early but
striking demonstration, the time course of the poststimulus
time histogram (PSTH) evoked in visual cortical neurons by
light flashes was found to replicate exactly the time course of
the local field potential recorded from the same electrode (Fox
and O’Brien 1965). Similarly, nearby neurons often show
correlations in spiking activity (Harris et al. 2003; Zohary et al.
1994). The correlation between activity in single neurons has
been perhaps most vividly demonstrated by simultaneous in-
tracellular recordings of spontaneous subthreshold fluctuations
in visual cortex (Lampl et al. 1999). Thus the existence of such
shared fluctuations is not surprising.

What is surprising is how little unexplained residual neuro-
nal variability remains in the synaptic input to a single neuron
after accounting for the variability in the population activity.
Indeed, this residual variability approaches the lower limit set
by a single source of private noise, the fluctuations associated
with stochastic quantal synaptic transmission.

Variability of cortical representation

What is signal and what is noise in a neuronal response?
Because the earliest single-unit recordings (Hubel and Wiesel
1959; Werner and Mountcastle 1963), sensory-evoked re-
sponses in both the awake and anesthetized cortex have gen-
erally been found to be highly variable: the same stimulus
typically elicits a different response on each presentation. Even
in the auditory cortex, where binary spiking approaches the
mathematical lower limit of variability possible for a given
firing rate (DeWeese et al. 2003), some variability remains.
Consistent with the present findings, some auditory cortical
neurons respond to complex stimuli with low-variability sub-
threshold responses, whereas others are more variable (Ma-
chens et al. 2004).

The origins and significance of cortical variability have been
widely debated (Diesmann et al. 1999; Kistler and Gerstner
2002; Manwani and Koch 1999; Marsalek et al. 1997; Mazurek
and Shadlen 2002; Pouget et al. 2000; Shadlen and Newsome
1998; Softky and Koch 1993; Stevens and Zador 1998). Sen-
sory physiologists often find it convenient to assume that any
stimulus-locked neural activity is signal, and that any fluctua-
tion around that activity is noise. This view, however, presup-
poses that the job of each neuron in sensory cortex is to encode
sensory stimuli as accurately as possible. Over the last decade,
a series of experiments has shown that much of the trial-to-trial
variability can be attributed to population activity, raising the
possibility that what is noise from the experimenter’s perspec-
tive need not be noise from the perspective of the animal
(Arieli et al. 1995, 1996; Harris et al. 2003; Lampl et al. 1999;
Tsodyks et al. 1999).
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One manifestation of what we have called shared variability
is correlated neuronal activity, which has been documented in
a wide variety of experimental preparations using a range of
recording techniques. In the visual cortex of awake behaving
monkeys, for example, some of the trial-to-trial variability in
the stimulus-locked response can be accounted for by the
activity of nearby neurons recorded simultaneously using ex-
tracellular methods (Zohary et al. 1994). Similar methods have
revealed correlations in the auditory (deCharms and Merzenich
1996; Eggermont and Smith 1995) and somatosensory (Stein-
metz et al. 2000) cortices. Correlations have been variously
interpreted as an impediment to (Zohary et al. 1994) or essen-
tial for (deCharms and Merzenich 1996) efficient sensory
representation, or as a target for nonsensory (attentional) mod-
ulation (Steinmetz et al. 2000).

Using intracellular methods, we have been able to quantify
directly the relative contribution of shared and private variabil-
ity to the voltage fluctuations that provide the input to the
neuron’s spike generating mechanism. By contrast, studies in
which only the spiking activity from a pair of neurons is
measured must invoke additional—and often strongly model-
dependent—assumptions to make inferences about the corre-
lational structure of synaptic input. The reason is that, by
definition, recording from a pair of neurons provides an esti-
mate only of the second-order (i.e., pairwise) structure of the
synaptic input; moreover, even in the limited context of pair-
wise interactions, it provides evidence about only a single pair
(i.e., about only a single element out of the entire matrix
describing all interactions between all pairs of neurons). The-
oretical work has shown that the details of correlational struc-
ture can determine the effect of correlations on representations
(Abbott and Dayan 1999). Because we have direct access to the
neuron’s membrane potential, we can circumvent the need to
make additional assumptions about the correlational structure
of the inputs.

We have also uncovered a marked heterogeneity in the
partitioning of variability across auditory cortical neurons (Fig.
7): whereas some neurons operated near the limit set by private
noise, in others shared fluctuations were the dominant source
(�85%) of variability. This heterogeneity raises the possibility
that different neurons may play different roles in sensory
processing. For example, less variable neurons might provide a
more faithful representation of the input signal, whereas more
variable neurons might provide a substrate for the integration
of signals from the sensory periphery with feedback signals
from higher cortical regions.

Interpretation in terms of classical quantal analysis

Under the assumptions of classical quantal analysis (Katz
1966), the variability index q can be interpreted in terms of the
quantal model of synaptic release. The simplest form of this
model makes 2 central assumptions. First, stimulus-evoked
release of neurotransmitter packets at each of N excitatory
synapses is assumed to be statistically independent, with a
uniform release probability p, and a uniform quantal size
(usually interpreted as the response to a single packet) Q; and
second, unitary EPSPs add linearly. Under these assumptions,
if N is sufficiently large and p sufficiently small, EPSP heights
will be Poisson distributed, with a mean of NpQ, and a variance

of NpQ2; the variability index q is then equal to the quantal
size, q � var/mean � NpQ2/NpQ � Q.

If all the noise were attributable to quantal fluctuations, and
if the assumptions of this simple quantal analysis were met,
then the variability index q would be exactly equal to the
quantal size Q. In practice, however, these idealized assump-
tions are never completely satisfied in any experimental sys-
tem: deviations from these simplifying assumptions plague all
quantal analyses and may cause the experimentally measured
index q to misestimate the contribution of stochastic quantal
release to the total variability.

On the one hand, deviations from the (low-p, high-N) Pois-
son limit, truncation of the miniature distribution for small
responses, and sublinear summation lead to an overestimate of
the contribution of stochastic release to the total variability. On
the other hand, other factors lead to an underestimate of the
contribution of stochastic release to q, including for instance
synapse-to-synapse nonuniformity (Brown et al. 1976) of
quantal size and release probability (Dobrunz and Stevens
1997). This effect will be particularly strong if the release
probability p is positively correlated with quantal size Q
(Schikorski and Stevens 1997). Similarly, any experimental
sources of noise, including recording noise, can artifactually
inflate the total variance and likewise lead to an underestimate
of the relative effect of quantal release.

In addition to the deviations noted above, our results were
subject to a deviation not usually encountered in quantal
analysis. Because the present experiments were carried out in
vivo, we could not isolate a pure excitatory component, so
tone-evoked responses consisted of a mix of excitatory and
inhibitory PSPs. Indeed, recent results (Wehr and Zador 2003)
indicate that the tone-evoked inhibitory conductance is typi-
cally nearly as large as its excitatory counterpart, and arrives
nearly synchronously (2–3 ms) with it. The effect of these
inhibitory inputs is to decrease the mean response while in-
creasing its variance, leading thereby to an underestimate of
the contribution of quantal release to the total variability.

Taken together, these deviations from the ideal quantal
assumptions—particularly the presence of a large and balanced
inhibitory component to the evoked response—suggest that the
experimentally measured distribution of miniature PSPs, Qmini,
provides a conservative estimate for the expected contribution
of stochastic release to the total recorded variability q.

Speculation on the role of shared variability

The presence of significant shared response variability in the
sensory cortex is not—at least in hindsight—surprising. The
number of neurons in the primary auditory cortex greatly
exceeds the number of auditory nerve fibers, even though the
amount of information represented by the cortex about the
acoustic world cannot exceed the amount of information en-
coded at the periphery. This excess “representational band-
width” available to the cortex implies that sensory information
need not be lost, even if the activity of most cortical neurons is
only loosely coupled to the sensory stimulus. For example, if
neurons in the auditory cortex outnumbered those in the audi-
tory nerve by 100:1 but were otherwise similar, then each
cortical neuron could carry 1% of the information carried by a
typical auditory nerve fiber without loss of total information.
Simple considerations such as these suggest that sensory cod-
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ing efficiency does not, by itself, strongly constrain cortical
representations.

We have observed substantial, circuit-wide fluctuations in
sensory-evoked synaptic responses, simultaneously affecting
many neurons in auditory cortex. Thus we have identified a
potential “signal,” available to many neurons, made possible
by the excess representational bandwidth in the cortex. Be-
cause the present experiments were conducted in the anesthe-
tized preparation, they cannot address directly the role that this
shared variability may play in the awake animal. However,
shared variability has been observed in awake animals—in the
visual cortex, for example, some of the trial-to-trial variability
in the stimulus-locked response can be accounted for by the
preceding LFP (Buracas et al. 1998), or by the activity of
nearby neurons recorded simultaneously (Zohary et al. 1994).
If the magnitude of the shared contribution to neuronal vari-
ability in the awake preparation is confirmed to be comparable
to what we report here, then it will clearly be key to understand
what role, if any, it plays.

One possibility is that this shared variability might represent
a nonsensory signal. The ability of stimulus-independent influ-
ences, such as attention (Reynolds et al. 2000; Treue and
Maunsell 1996), to modulate sensory responses is well estab-
lished. Indeed, the stimulus-independent component of the
correlation between neuronal response and behavior—some-
times interpreted as the result of noise in sensory cortex biasing
a decision (Britten et al. 1996)—might instead reflect a signal
from other brain areas carrying information about bias or
intention (Steinmetz et al. 2000). Shared fluctuations in the
behaving animal might thus represent a conduit for the high-
level modulation of sensory responses.

Alternatively, the shared component might simply represent
noise (Zohary et al. 1994). One way this could arise is if the
information encoded in the shared variability were, for some
reason, unavailable for useful computation. For example, in a
completely deterministic neural circuit operating in a chaotic
regime, all variability is shared, yet it is hard to imagine how
this could be exploited. However, our results demonstrate that
shared variability is easily identified, even with the crude
assays available to us as experimentalists; the cortex, with
vastly more subtle mechanisms available to it, may well have
evolved a means of exploiting this excess bandwidth. Thus it
seems to us plausible that shared variability may carry a useful,
nonsensory signal.
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